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1. Introduction 

The main purpose of this article is to give an elementary account of  the bigraded 
r~g  structure of  the E2-term of  the Adams spectral sequence for the sphere 
s ~ ztrum defined by complex K-theory localized at the prime two. As a consequence 
c_~ zhe particularly simple structure of  this bigraded ring, it is possible, with the aid 
of convergence, to determine the differentials and the limit group of  this spectral 
sequence. It is therefore a subsidiary concern of  the article to catalogue the basic 

facts involved in calculating with the sequence. 
In order to state our main result let us set some notat ion and terminology. Let 

K denote the BU-spectrum localized at the prime two. It is well-known that  this 
E2-term is the cohomology of  K.(K):  for all s and t (s___ 0) 

E~' t=  n ~ t ( g , ( g ) )  = Ext~;t,(K)(K,(S°), K,(S°)).  

Adams, Harris, and Switzer [4] have shown that  the Z~2)[t, t-1]-bimodule K,(K)  is 
a :ertain subring of  Q[u, o, u- l ,  o - i ] .  In particular, they located elements 

gn = (o n - un)/2a(m ~ K2n(K), 

where d(n) is the highest power of 2 dividing 3 I ' t-  1 and n is a non-zero integer. 
Finally let C =  K.(K)  and if g is a generator of  the cyclic Z(2)-module M, let us 
denote this relationship by M(g) .  

The bigraded ring structure of  the cohomology of  C, H**(C), is given in 

Theorem 1.1. 

Z(2)(1), n = 0, 
z) H° 'n ( c )  = (0,  n:#0.  

(b) HI'n(C) = ~ (Z/2d(t))(gt)' 
(0, 

n = 2 t ¢ 0 ,  

n=O or n odd. 
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Here we have denoted the cohomology class o f  gt by gt. 

(c) Hz'n(C) = 

-Q/Z(2) (~ (Z /2)(gl g- 1), 

(z/2)(g_~g2), 

(Z/2)(g lg t - l ) ,  

O ,  

n = 0 ,  

n=2 ,  

n =2t~0,2 ,  

otherwise. 

In H2'°(C) the Q/Zc2)-summand is spanned by the elements g2'g-2' with i > 0  and 
these elements are infinitely 2-divisible. 

(d) For s > 2,- 

~-(Z/2)(~-  2g_lg2), n = 2 s -  2, 
HS, n(C)= ~(Z/2)(g~- lg t_s+l) ,  n=2 t  but #:2s-2 ,  

I 

t._0, otherwise. 

(e) The relations 

g-re" 2'gin" 2' = g-2'g2' with m odd, i>_ O, 

g2rg2t = 0 with r, t ~ O, t ~ -r ,  

g2r+lgn =glg2r+n with n ~0, -2r,  

g2r+lg_2r=g_lg2 with r4:O, 

g-2'g2' = 2g-2'~ 1g2'+ t + 23+lg-2'+zg2'+2 

with i > 0 and those implied by these are exactly the relations among products in 
H**(C). 

One can summarize Theorem 1.1 by saying that H*(C) with ,___3 is the 
(Z/2)[gl]-module generated by the generators of H ° , H  l and the products 
g-lg2,g-2'g2', i>0 ,  subject to the relations gT~. g-2'g2' =0 when i, m>0 .  

Using the identification K , ( K ) c Q [ u , o , u  -1, 0 -1] (see also 2.1 below) we recall 
the structure maps of C = K . ( K )  in the next formulae: 

(a) the units r/L,r/R :R=Z~2)[t , t -~]~C are given by r/L(t)=u, r/R(t)=o; 
(b) the augmentation e : C ~ R  is given by e(f(u, 0))= f(t;t); 
(c) the product g : C ® C ~ C  is multiplication of polynomials; 
(d) the coproduct (or diagonal) ~ : C ~ C ® R C  is given by ~ ( u ) = u ® l  and 

~(o) = 1 ® o. 
The cohomology of C=  K,(K)  cannot be computed by the usual methods (e.g. 

the May spectral sequence, the Adams' change of rings spectral sequence for Hopf 
algebras, etc.) since the left and right actions of Z(2)[t, t -1 ] on K.(K)  do not agree; 
instead Theorem 1.1 is deduced from the exact sequence 

.....,HS, t(C ) 2. ,H2,t(C) j, ,H~t(C,)  ~ ,HS+l , t (C)~ . . .  
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where C' is the Hopf  algebra obtained from C by tensoring all of its structure maps 
with Z/2 .  There result then commutative diagrams 

~L ' YIR 
R , C  C 

R'  ~C' C'  

I.l 
c ® c  , c c 

c ' ® c '  , c '  c '  ll' 

, R  

,R' 

A 

, C ® R C  

[ J@J 

' C ' ® e , C '  

! ! 

where d = 7 ' ® Z / 2 ,  rlL = r lL(~Z/2 ,  etc. and j denotes the map obtained by tensor- 
ing with Z(2 )-*Z/2.  Once sufficient information about the Hopf algebra structure 
o!" S '  is known, its cohomology can be computed by means of Adams' changes of 
r~:~gs spectral sequence for Hopf  algebras [1]. The Hopf algebra structure of C' is 
g-ven in 

Theorem 1.2. (a) The left and right action o f  R ' =  (Z/2)[t, t - l  ] on C'  coincide. 

(b) C' is the polynomial  algebra over R '  on generators {w,}i_ 0 o f  degree 0 sub- 
ject to the relations w o = 1 and f o r  i > O, w 2 = w i. 

(c) The diagonal A o f  C'  satisfies 

d(Wk+l)=Wk+l@l + l®wk+ 1 f o r  k=0 ,  1 

and f o r  k >_ 2 

I M 

A ( w k + l ) = W k + l ® l  + l®Wk+l+ Wk®Wk+ ~ m s Q m s ,  
S 

t M 

where ms and m s are monomials  in wl, . . . ,  w k, at least one which contains a fac tor  
w~ with i< k. In particular, 

A W  3 = W3~) l  + 1 ® w  3 + w 2 Q w 2 +  w 2 Q w  1 q- W l ~ W 2 - i -  W l ( ~ W  1 . 

Let x and y in HI '°(C' )  be the cohomology classes of w 1 and wl + w2 respec- 
tively. Then the cohomology H**(C' )  is given in 

T~eorem 1.3. H**(C' )  = PR'[X] ®R' ER'(Y) where PR' and ER, stand f o r  polynomial  
a, . i  exterior algebra respectively. 

As an application of Theorem 1.1 we will determine the differentials in the 
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K-theory spectral sequence for S O and in terms of them determine its limit group 
rr,r(S°), the K-completion of the homotopy groups of the sphere spectrum n,(S°). 
As a general rule in order to get geometric information of an Adams spectral se- 
quence, some geometric 'prime' seems to be required. In the present case this 

g (S o) and n2r(S°). The assump. 'prime' will take the form of assumptions on rt_~ 
tions which we are going to make are certainly true and while our arguments might 
be more satisfying (or at least more complete) if  we were to supply verifications for 
these statements instead of simply assuming them, this would take us too far from 
our purpose (as these verifications unavoidably involve a considerable amount of 
localization theory applied to the BO spectrum for real K-theory). 

So for our next result, in addition to Theorem 1.1 and the convergence of the 
spectral sequence [5], we will assume known that 

zrx_l(S°)=rr_l(S°)=O and ItK(s°)=lt2(S°)=Z/2. 

Theorem 1.4. (a) The following elements survive to E**: 

l~EO. 0 

gneE~ "2n for n=4i~O, n=4i+ l, and 

g _ l g 2 E E  2'2. 

(b) For n = 4 i + 2  or 4i+3, d3(gn)=g3gn_2 . 
(c) The values o f  the differentials on the remaining elements are given by Theorem 

1.1 and the Leibniz formula. 

The next result which gives the values of rt,K(S °) is the immediate corollary to 
Theorem 1.4 which one would expect. 

Corollary 1.5. The groups nir(S °) are: 

Z(2)OZ/2 for i = O, 

Q/Z(2 ) for i=-2 ,  

Z/2 for i - -0(mod8) ,  with i#:O, 

Z /2~)Z/2  for i -  1 (mod 8), 

Z/2 for i -  2 (mod 8), 

Z/8 for i -  3 (mod 8), 

Z / 2  d((i+l)/2) for i - 7  (mod 8), with i ~ - l ,  

and 0 otherwise. 

The proofs are organized as follows. In Section 2 Theorem 1.1 is deduced from 
Theorem 1.3 and several technical lemmas. In Section 3 Theorems 1.2 and 1.3 are 
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proved. In the final section the results of the previous sections are applied to obtain 
Theorem 1.4 and Corollary 1.5. 

Finally a few words about priority. The author is informed by Andrew Baker that 
D.C. Ravenel knows both the EE-term and the differentials of the K-theory spectral 
sequence for sO; the author supposes J.F. Adams does also. Moreover Adams, 
Baird and Ravenel [5] have a determination of 7t.X(S °) obtained by different 

methods. 

2. Proof of Theorem 1.1 

Before beginning the proof certain technical matters need to be disposed of. As 
the cohomology of K , ( K )  is the homology of the cobar complex, it will be con- 
venient to set notation for it by recalling its definition. If C is a Hopf  ring of co- 
operations over R (among other things we are assuming C is a bimodule over R with 
augmentation e : C ~ R ;  see [10, p. 415] for definition), then the cobar construction 
is the cochain complex whose sth term g2s(c) is the s-fold tensor product of C and 
whose differential 

d s : F 2 s ( c ) ~  s+ 1(C) 

is given by the formula 

dS(al (~ ' " (~as )  = 1 @al ... @as + ( -  1) s+ t al (~ ' "  @ a s Q  1 
S 

+ ~, ( - 1 ) ' a l ® " ' ® ~ t ~ i ® " ' ® a s  

where ~u: C ~ C ® R  C is the co-product of C. The reduced co-bar complex D*(C) 
is the sub-complex of Q*(C) defined by (2s(c)  = ®s ker e. If  the left and right ac- 
tions of R on C coincide, then the definition of D*(C) given above agrees with the 
usual one [1]. 

." order to choose suitable cocycle representatives for the generators of 
E ~":"~K,(K)) and to establish relations among products of cohomology clases it will 
be convenient to recall the main result of Adams, Harris and Switzer in [4] as 
adapted to the 2-local case. As zt ,K= Z(z)[t, t -l] and n , K ® ~ z , K ® Q = K , ( K ) ® Q ,  
there is a monomorphism 

K, (K)  = K , ( K ) @  Z(2 ) ~ K , ( K ) ( ~  Q = Q[u, o, u -1, o -l  1. 

Adams, Harris and Switzer characterized its image in the following 

Theorem. A Laurent polynomial  f(u, v) e Q[u, v, u - iv  -l ] lies & K . ( K )  i f  and only i f  

f ( t , (2r+ 1)t)eZ(2)[t,t -~] f o r  all r ~ Z .  (2.1) 

Condition (2.1) is called the integrality condition and polynomials which satisfy 
it are said to be integral. 
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The proof proceeds in three steps. 
(a) If f is in K.(K), f is shown to satisfy (2.1) by means of Adams' operations 

~2r+l : K - ' K  (which are defined since K is 2-local). 
(b) The elements 

o ( v  - u )  . . .  ( v  - ( n  - 1 ) u )  t 

pn(u, o) = 
n[ 

clearly satisfy (2.1) as do the binomial coefficients 

( w ) =  w ( w - 1 ) . . . ( w - n +  

where w = ou -~ so that 

(:) p n ( u ,  o) = u n 

An inductive argument using the binomial coefficients shows that i f f  satisfies (2.1), 
then it is a Zt2 ) [u, o, u-l, o-1].linear combination of the p,~. 

(c) Finally, the p,~ are shown to lie in K,(K) by analyzing the effect of the Bott 
map in the K-homology direct limit which defines K.(K). 

We remark in passing that the polynomials gn defined earlier satisfy (2.1) for 
reasons of number theory worked out by Adams in J(X)-II .  

To prepare the way for the study of relations, we shall also need the following 
notation. 

For y =  w®z~  [I22(K.(K))]2n with w= ~,+j=naiju'o j, set ((y)=aonunz; for y =  
~yaEf22(K,(K))  with y~= w~®z~ define ( (y)= ~ ((Ya). In terms of this nota- 
tion, we have the following 

Lemma 2.2. For y = ~ w~®za ~ [~'22(K.(K))]2n with d2y = O, set 

((y, a) = ((y) + a(o"-  u") 

with aeQ.  Then y e i m d  I i f  and only i f  for  some a in Q 

((y, a)(t, (+-30) e Z(2)It, t-~]. 

The proof of 2.2 is sketched at the end of Section 3. 
With these preliminaries out of the way we can now begin the proof of Theorem 

1.1. 

Proposition 2.3. In H**(K,(K)) 

g_m.2,gra.2,=g_2,g2,, m odd, i > 0 ,  

g2rgEt=O, r,t:/:O, t:/:-r, 

gEr+lgn=glg2r+n, n:/:O, -2r  

g2r+lg_2r=g_lg2, r~O. 
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Further the groups  H~  * ( K , ( K ) )  are torsion f o r  s >_ 1 and in part icular the e lements  

glgn with n =/=0 and  g- lg2 have order at mos t  2 as do their g'~ multiples.  Finally f o r  
i > 0  the e lements  g-2'g2' have order 2 '+2, are infinitely 2-divisible and 

g-2'g2' = 2g-2'+lg2'+ ~ + 23 +'g-2'+zg2'+2. 

Proof.  All assertions about elements in H 2'*(C) (C = K . ( K ) )  are immediate conse- 
o~. ::nces of  2.2. For example if 

Y =  g-E'(~g2' -- 2g-E'+~Qg2 '+~ - 23+ig-E'+2~g2 '~2 

1 -2 '  1 _2 ,+ ,  l - 2  '+2 
= U g2,+1 - g2,+2 ((y) ~ - ~ U  g2' 2,+2 T u 

is integral since ((y)(1, - 3 )  = ((y)(1, 3) is in Z(2 ). The claim about order of  g-2'g2' is 
established as follows. For Yi =g-E'~)g2 ', ((2~+2Y,) is integral so 2'+2y, bounds. On 
the other hand,  there is no number  a e Q so that 

((4y 1 , a)(t, (_+ 3t)) e Z(2) [t, t - l  ]. 

I-~.~qce 4g_Eg2~0 in H Z ° ( C )  while 2i+lg_E,g 2, = 4g_2g 2. 
7he values of  H I ' * ( C )  are well-known [4, 10]. To show that H'n'*(C) is torsion 

for m >__2, we employ a generalization of the element ((y) of  2.2: for y = ~ ,  w ~ ® z ,  

with z ~ e £ 2 m - l ( C )  and Wa:~..,+j=na~juio J set ((y)=~.~aonUn~Z~. Then if 
dmy = O, d m- l(((y)) =y .  In general ((y) is only an element of  ® m -  1 Q[u, o, u -1, o -l  ] 

and not of I2 m- 1 (C). However for some power of  2, say 2 n, 2n((y) e £2 m- I(C) and 
then d m- 1(2n((y))=2ny. Similarly using the construction ( one can show that  g~' 

multiplies ( m _ 0 )  of glgn and g-lg2 have order at most 2 in H * * ( C ) .  This com- 
pletes the proof.  

We are now in a position to obtain the coboundary ~:H* '* (C ' ) - - ,H*+1 .* (C)  
where C = K , ( K )  and C ' =  K , ( K ) / 2 .  

Proposit ion 2.4. The value o f  t~m:Hm'Zn(c')---~Hm+l'2n(C) f o r  m > 0  is given by 

the f o rmu lae :  

(a) 

(b) 

) '/1 t~m(tnxrn) = gl @(0 n - m - u n - m  2 ,  

~m(tmxm- ly )  I ( %  1 ) (O n - m -  U n 1) /  1 = gl  @g2(~ I_ - m -  2 .  

Proof.  Formula (a) follows from the fact that u n - ' ~ g l ® ( ® m - l g O e £ 2 m ( C )  pro- 
j ~ : s  to cocycle in f 2 m ( c  ") which represents tnx m, while formula (b) follows from 
t::~ fact that  ®,, ,-i  gl(~un-m-lg2E~,2m(c) projects to a cocycle in 12ra(c ') which 
represents tnx m - l y since j n  - m - l g 2 = u n - ra - 1 (u2 _ u 2)/8 projects to t" - m + 1 (w~ + w2) 
in K , ( K ) / 2 .  
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Corollary 2.5. F o r  m > O, 

(a) 6m(tnxm) = fO, n -  m is even, 
( g~n gn_ m n -  m is odd; 

(b) I 
O, 

O, 
6m(tnxm- l y )  = 4g2g_2 ' 

I g ~ g n - m ,  
~ g ~ -  l g2g_l , 

n - m is o d d  bu t  ~ - 1, 

n - m = - I  and  m >  l, 

n - m = - l ,  m = l ,  
n - m is even but  :/: O, 

n- -m=O.  

The proof  is immediate in view of 2.3 and 2.4 and the definition of  the gi's. 
The next step is to define a certain subring of  H * * ( C ) .  let B ~t be the subgroup 

of  H ~ t ( C )  asserted to be the value of  HS' t (C)  in Theorem 1.I. For example, B2 '2 -  - 
( Z / 2 ) < g _ l g 2 )  c H 2 ' 2 ( C ) .  It is our plan to show that B S ' t = H S ' t ( c )  for all s, t. This 
is well-known for s = 0 ,  1. For the present we note that  t ~ m : H m ' n ( c ' ) ~ H  m+ l 'n(c)  

actually takes its values in B m+ l,n and that B** is a bi-graded subring of  H**(C) .  

Theorem 2.6. The sequence 

.....,BS, t 2 ,  , BS, t j .  , ns ,  t(C, ) 6 s 

is exact, where 2 .  and  j .  are the restrictions to B*'*  

2 : C ~ C  a n d j  : C ~ C ' =  C / 2 C .  

,, , BS+l.t__.... 

of the m a p s  induced by 

Proof. Since 2 ,  is just multiplication by 2, the theorem will follow from 2.3 and 2.5 
once the behavior of  j ,  is known. Since j .  is a ring homomorphism,  its behavior 
on B s~t with s >  1 is determined by Theorem 1.3 and its behavior on B 1'* which is 
given by the formula 

~ tnx,  if n is odd, 

J.(gn)  = ( tny ,  if n is even but q:0. 

This follows easily f rom (2.1); for if n is odd, then 

f ( u ,  o)= +[(o n -  u n ) / 2 -  u n-  2p~(u, 0)1 

is integral while if n :~ 0 is even 

g(u, o )=+[o  n -  un ) /2  a~n)- u n-  2p~(u, o ) -  un-4p~(u, o)] 

is integral. As a consequence 

~ tm+nx re+l, 

J*(g~gn)= (tm+nxmy, 

and 

while 

n odd, 

n even (~: 0) 

J*(g~g2 g-1) = tm + I X m  + ly 

j . (g_2,g2, )=y2=O,  if i > 0 .  



The 2-primary K-theory Adams spectral sequence 151 

It follows therefore that the generators in Theorem 1.1 have the orders claimed and 
that the sequence of the present theorem is exact. 

Modulo the proofs assigned to the next section, the proof of Theorem 1.1 is com- 
pleted by the next proposition. 

p*Gposition 2.7. In the exact commuta t i ve  ladder 

0 )im t~ 1 

0 ,im j1 

, B2,, 2, ) B2,, j, )H2,.(C, ) 

) g21* ! ._ g2'i! 

H '  (C) 2 H (C) j*,H 2'*(C') 

¢~2 2. 
)n3, ,  )... 

l g3,, 
~2 H 3'*(C) 2.)... 

the inclusions labelled g~* with s >__ 2 are in f a c t  identity maps.  

Proof. In an inductive manner apply the following fact about torsion groups: if in 
- exact commutative ladder 

0 ) H  I ) B ) B ) H  2 

<I gl 'l <I 
0 ) K  l ' H  ' H  ' K  2 

B , H  are 2-torsion and f l ,  f2  are isomorphisms, then g is an isomorphism. (A 
version of this involving torsion modules over more general rings appears in [8]). 

3. Proof of Theorems 1.2 and 1.3 

We begin by deducing 1.3 from 1.2 by means of the Adams'  change of rings 
spectral sequence for Hopf algebras [1]. As before let C ' =  K . ( K ) / 2 .  We may filter 
C'  by sub Hopf algebras C~" C~ is the sub Hopf algebra generated by Wl,..., w k. 
For each k___ 1 

' C~+I/ /C~--~ R'  

:~;:, an injective extension sequence [91 (C~+ I / / C ~  = C~ + 1/I(C~) • C;c + l, where I(C~) 

: :he augmentation ideal.) Thus for each k_> 1, there is a multiplicative spectral 
~equence ~(k)= {Er(k) ,dr(k)}  for which 

E~'q(k) = H  P (C~<)(~H ' q (C~<+I//C~)=HP+q(c~+I): 
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The spectral sequence is constructed by filtering the reduced cobar complex 
O*(C~+ 1) as follows: 

f l (~ ' . ' (~fseFpOs(C~+ l) 

if n ( f i )=  0 for p values of i. 
The formula for A we in C' can be interpreted readily in the spectral sequence 

Lemma 3.1. Let z/, = {d(wk+ l)) EH2(C/~) where d is the cobar differential and {. } 
denotes homology class. 

[0  fork=O, 1 
(a) d°'l{Wk+l} =zk= 0 for k> 1 

in e~°(k)=H2(C/c). 
(b) For k > O, the projection 

,-~ 2(C/~ + I ) "~,.,~ 2 (C/~ + 1///C/~) 

maps dwk+2 to Wk+l®Wk+l. 

The cohomology of C~+1 can now be computed inductively from ~(k). As the 
differentials in ~(k) commute with the action of R'=(Z/2)[t, t-l], we omit coeffi- 
cients of the form t n. 

Lemma 3.2. ~(1) collapses, so H**(C~)-~Pw[x]®wPw[Y], where 

x={wl} and y={wl+w2}. 

~ v v 
Proof .  H**(XC~)=Pw[x] and H (C~//C1)=Pw[{w2}]. According to 
d o, 1 { w2 } = 0; since the differentials are derivations, E~*(1) = E**(1) .  Thus 

H**(C~) = Pw[X]®R, PR'[{ WE}] = PR,[X]® R' Pw[Y]. 

3.1, 

Lemma 3.3. (a) F o r  k > 1 

H**(C~ + 1) "~ PR,[X] (~R, ER,( y)®R, PR'[Zk + 1], 

(b) For k>2, i,  : H**(C~)-~H**(C~+I) maps x to x, y to y and zk to O. 

Proof. (a) For k > 2 suppose that it has been shown that 

H**( C;) ~ Pg,[x] QR" ER,(Y)®R" PR'[Zk]. 

It is clear that H**(C~, + I//C~,) is Pw [{ wk + 1}]- According to 3.1, d°'l({ wk ÷ l}) = zk, 
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while { w k + l ® W k + l } e E  °'2 survives to Zk+l, since the 
E~ 2 --,E2 °'2 is the map 

F ° H  2 (C~ + 1 ) / F  l H E (C~ + 1) --> H2 (C~ + 1/ /C~)  

induced by the projection 

O2(c  + + 

' f iber '  edge morphism 

?!-.cs E~*(k) =--PR,[X] ®R' ER'(Y)®Pw[Zk + ~] and E~*(k) = E**(k). 
tn case k = 2 ,  H * * ( C ~ ) = P n , [ x ] ® w P R , [ y ]  and d?'2({w3})=y2;  otherwise the 

determination of  H**(C~) is as above. This completes the proof  (a). Part  (b) is im- 
mediate since the 'base' edge morphism 

E~'°--,E~g ° is HP(C~)~HP(C~+I) .  

The proof  of  1.3 now follows from 3.3 since C ' =  dir lim C~. 

The next order of business is the proof  of  1.2. First note that the left and right 
aczions of R '  on C '  coincide since 2d(n)g n = O n -  U n. NOW recall that the elements 
p~ >:. o) = u"(~) span C over Zt2)[u,o,u -1, o -1] so that the images of the elements 
(,~, under the map j "  C--+C' span C'  over (Z /2 ) [ t , t - l ] .  

Lemma 3.4. The set {J(~'n) [ n = 0, 1, 2 , . . .  } is a basis f o r  C '  over R'.  

Proof .  To see that this set spans C' ,  we note that 

• W W for 

a 7act which follows at once f rom the identity 

w W + 1 ) ( 2 k +  1) 
w 

To show independence for the set it is sufficient to show it is independent over 
Z / 2 .  Suppose there are numbers a i E Z / 2  such that 

0 
,=o 2i 

in C'.  This relation entails and is entailed by the relation that 

(w) )  
T ai ,=0 2i 

is integral for some numbers ai~  Z~=). We will show that this relation implies that 
a,---O (mod 2); that  is, a , = 2 A / ( 2 B +  1), A, B e Z .  
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Now in order that 

(w) 
F(u, o)=-~ a i 

, =o 2i 

be integral it is necessary (and sufficient) that F(1, 2r+ 1) lies in Zt2 ) for alI r e  Z. To 
begin with, F(1, 1) must be in Z(2); but F(1, 1 )= la0 ,  so ao=2K/ (2L+ 1) with K,L 
in Z. Likewise F(1, 3) must be in Zt2) but 

F(1, a ) = -~ao + -~al = K/ (2L  + 1) +~a l .  

Thus a I = 2 M / ( 2 N +  1) with M , N ~ Z .  Continuing in this way, we see that ai=-O 
(mod 2) for each i = 1, 2, . . . ,  n. 

The last step in determining the algebra structure of C '  is given in 

L e m m a  3.5. (a) I f  2n= ~m 1 ai 2i with ai=O , 1, then ()m 
j w -l-lw ' 

2n i=1 
where w i =j(2w).  

(b) For k > 1, w~ = wk. 

P r o o f .  For (a) it suffices to show that 

1 W 

,=l \ 2 ' ]  ] 

is integral. However the integers r for which (2~)-=0 (mod2) are precisely the in- 
tegers r for which 

11 m 0 ( m o d  2),  \2i/ 
and the desired integrality follows. The proof of (b) is similar. 

From the formula for ~ in C, it is easy to show that A w = w® w. This formula, 
the formulas 

(w) r rwr wr si(W) =m-.t •Sn and = i! 
r = 0  i = l  

(which define the Stifling numbers of the first and second kind) and some power 
series algebra over Z / 4  entail part (c) of 1.2. The details are given in [7]. 

We close this section with a brief discussion of 2.2, the proof of which involves 
the stable Adams operations 

~2r+ 1 : K,(K)- -*K, (K)  

presented in [4]. It follows from its definition that ~2r+ 1 is a map of left-K,(K) co- 
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modules and that ~2r+lf(u,o)=f(u,(2r+ 1)o). Adams [3] has given the following 
criterion for integrality of  an element f(u,  o) e Q[u, o, u -1, 0 -1 ]. 

Lemma 3.6. Let f(u, o) be a Laurent polynomial for  which 
(a) 7"3f_ f  is in K,(K) ,  and 
(b) eT'3 f and eT'-3 f e Z(2)[t, t -11 (where e : K , ( K ) ~  Z(2)[t, t -1 ] is the augmenta- 

tion). Then f is integral, that is f eK , (K) .  

We indicate the proof  of  3.6. Suppose given an odd integer 2 r+  1 and Laurent 
po:~ynomial f =  ~ aeu~o J. If  2 u is the largest power of 2 occurring in the 
denominators of  the a,j, then there is an integer k _ 0  so that 2 r+  1---m (mod 2 N) 
where m = 3 k or m = - 3  k (since 3 and - 3  generate the group of units of z /2N) .  
Then 7"2,+1f_ 7"mf is integral so that  one only needs to check Condit ion (2.1) 
when 2r+  1 is 3 k or - 3  k. It is easy to show that (a) and (b) of  3.6 insure that (2.1) 
holds for these values of 2r + 1. 

To obtain 2.2 one uses the definition of ((y, a) and the fact that 7"3 is a map of  
left-comodules to show that 

7 '3 ((y, a) - ((y, a) ~ K , (K)  

-~_- any a e Q with eT'3(y, a) e Z(E)[t, t - l ] .  The result is now immediate from 3.6. 

4. P r o o f s  o f  1.4 and 1.5 

The proofs are given in order. Recall that the hypotheses for 1.4 are 
(a) the spectral sequence converges to nK,(s°), and 
(b) n_x'l (S °) = n_l(S °) = 0 and nr2(S °) = n2(S °) = Z/2 .  

L ~:ama 4.1. (a) Tors nor(S °) -- (Z/2)(g_ lg2), 

b) d3(g2) = g21gzg-1. 

Proof .  (a) We first show that Tors nor(S °) is at most Z/2 .  Since n_Kx(S°)=0, none 
of the elements g~kg_ k (k_>l) survives, a fact which entails that  none of the 
elements g2k+ ~g-k with k>_ 1 can survive. It remains to show that  g-lg2 survives for 
which it suffices to show that  ty e Hl '2(C ' )  is the e-invariant of  some a e n~(C(2)). 
(Here C(2) is the mapping cone in the cofiber triangle 

2 
S o , S O 

C(2). ) 

For given such an a, 6X(ty)=g_lg2 by Corollary 2.5 on the one hand and Q(2)a 
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projects to g-lg2 by a geometric boundary argument on the other. To construct ~, 
we proceed as follows. According to Adams [2], there are K-equivalences 

A : ~'6C(2)'--,~'-2C(2) and A ' :  C(2)--,27-2C(2) 

associated to 8aer t7(S °) and tT~nl(S°). Let 0 be the coextension 
A'P(2):S°--*2'-2C(2). Then we have a commutative diagram 

S 7 

S 7 

S ° , C(a) 

oa , Z'-2C(2) ' "C(Oa) 

The element e e 7~K(c(2)) is represented by the 6-fold desuspension of  the diagram 

$7 .... 0a , £_2C(2 ) ~ A ,~v,6c(2). 

To compute e(a) we note that there are elements 

aEKs(S-2OEe-lU#~re s) and b~Ks(S°Uae s) 

which map to the generator t 8 eKs(S s) under the obvious projections and maps 

l "  " S - 2  U2 e - 1 Oe~eS ..., K ^  Z'-2 (7(2) 

and 

7: S°Uae s --, K 

which extend Z-2C(2)--,KAZ-2C(2) and S°---,K respectively. Then e(Oa) 
represented by z , ( a )eKs(K^~-2C(2) )  [6] and there is a commutative diagram 

is 

K8(S -2 U2 e-1UeaeS),  

l ,  

2 ( I A A ' ) ,  
Ks(KAY-  C(2)) ,. 

(I ̂P(2)). 
KdK^C(2))  , 

Ks(KAZ.6C(2) ) , (1 ̂ P(2)), 

Ks(S°Uae 8) 

KdK) 

KdKAS 6) 

in which the bottom vertical isomorphisms are compositions of Bott maps. Since 
O.(b) =a, ~.(b)=g4=(o4-u4)/16 and a is the 6-fold desuspension of 

$7 Ocr ,2._2C(2) ' A 2.6C(2), 
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e(a) is represented by t-3(1 ^P(2)) , (g4)  in K2(KA C(2)) but t-3(1 ^P(2)),(g4) equals 

ty according to the proof  of  2.6. 
Finally the proof  of  (b). Since g-lg2 survives, g~g-lg2 is permanent, so if d3g2 

fails to hit g~g-lg2, n~(S°) would have order at least 4. This is a contradiction 
since n~(S °) = Z / 2 ,  generated by r/2 (which projects to g~). 

Corollary 4.2. In E 3, d3(g_1)=g~g-3 and d3(glg_l)=g4g_3 . 

The remaining assertions of  1.4 are covered in 

Lemma 4.3. (a) For n =4i,  4 i+  1 (with n:/:O), gn survives. 

= d3 (gn) = gl gn - 2- (b) F o r n  4i+2, 4i+3: 3 

Proof. (a) For i >_ O, g4(i+ 1) and g4, +i survive as they are the e-invariants of elements 
of n . (S  °) by results of  Section 7 of [2]. According to 1.1, 

g-4tg4~+l=g2g-1, i > 0 .  

Applying dr to this equation, we see that for r > 2 

dr (g _ 4 i ) "  g 4 t  + 1 '= dr (g2 g -  1 ) = 0. 

Thus for r___ 2, dr(g-4i)= 0 when i >0 .  In like manner  the fact that 

g1-4ig4i+ 1 = g~ 

entails that dr(gl_4i)=O for i > 0  and r_>2. 
(b) Applying d3 to the relation 

g4i+ 3g-4i- 3 = glg-i  

one sees that 

d3 (g4, + 3)" g-4z-  3 = g~g- 3 

from which it follows that 

d3(g4i+ 3) =g~" g4,+ l- 

For n = 4i+ 2 with i:~0, use the relation 

g41+2" g - 4 J -  1 = g 2 g - l "  

We close this section with an illustration of how 1.5 can be deduced from 1.4. 

Lemma 4 . 4 .  I f  z ~ E ~  t with s>  3, then z fails to survive to E~ t. 

Proof .  The proof  can be broken down into cases according the mod 8 value of t -  s. 
The case ( t -  s) -= 1 (mod 8) is typical and we give it in detail. We need only concern 
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ourselves with s -  2m + 1 (m > 1) and t = s + 8k + 1. Then E~' t = Z / 2  is generated by 

g~z-1 ,  g4k + 4 -  s" 

For s--1 (mod4), this generator survives to E~ 't and bounds, while for s ~ 3  
(mod 4) d3 of  it is nonzero. The cases of the other mod 8 values of  t - s  are similar. 

The proof of  1.5 is completed by treating the elements on the 3 line of  the spectral 
sequence according to their mod 8 values of t - s .  We continue with the illustration 
( t - s ) - -  1 (mod 8). If t - s =  1, E2 3'4 is generated by glg2g-1, while E2 3'8k+4 with k ~ 0  
is generated by g2g4k, each is a permanent cycle which cannot bound. Thus 
7r~+j(S °) has order 4. According to Adams [2] there is an element of  order 2 in 
nsk+l(S °) whose e-invariant is g4k+l so the extension is split. 

The case when (t-s)---3 (mod 8) is analogous. From the knowledge of the dif- 
ferentials it is easy to show that rttK_s(S °) is an extension of Z / 4  by Z/2 .  As with 
the previous case, results from J(X)-IV (Section 7 in [2]) resolve the extension 
problem. 
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